To content

Bachelor and Master theses

Bachelor theses

A researcher holds a sample vessel in his hand. © Roland Baege​/​TU Dortmund

If you are interested in doing a bachelor thesis in:

    Natural product biochemistry
    Drug metabolism
    Plant cell culture
    Natural product analysis

please contact Dr. Marco Aras or Prof. Dr. Dr. h.c. Oliver Kayser personally or by e-mail.

 

 

 

Masterarbeiten

9 September 2021 The following master thesis is offered at the Chair of Technical Biochemistry:

Genomics in heterologously-transformed Cannabinoid-producing Saccharomyces cerevisiae

About the project

In recent decades, research and pharmacological-use of Cannabis sativa has exploded in popularity due to relaxation of prohibition in many countries around the world. This has created a global demand for cannabinoids and resulted in the development of a lucrative global industry. Traditional cultivation of cannabis has proved to be problematic at industrial scale for many reasons. Most notably, in the past year, Canada and the United States saw that cannabis-supply far exceeded its demand and responded by destroying crops and exporting product at deflated prices. Such problems have destabilized the cannabis market. The cannabis industry could therefore benefit from having an instantaneous-system of cannabinoid production that can be done with a scalable and inexpensive process such as fermentation by microorganisms. The chair of Technical Biochemistry researches, designs and engineers cannabinoid biosynthesis-processes in heterologous-strains of Saccharomyces cerevisiae.  This research will optimize cannabinoid-bioproduction by characterizing the impact of genetic engineering on transcriptional- and metabolic- regulation.

Proposed methods:

This work will involve wet- and dry-bench methods using an Oxford Nanopore MinION Mk1C to sequence the genome and the transcriptome of S. cerevisiae. While opportunities for transcriptomics and metabolomics are available, this research will primarily foucs on genomic acquisition, assembly and alignment. Wet bench methods include cell cultivation, DNA extraction,  targeted-PCR and q-RT-PCR, and Oxford Nanopore sequencing. The student will then help to assemble the genome, identify homologs and annotate genes, and compile transcriptomic data. The student should be prepared to research their own methods as appropriate and collaborate with their supervisor on method implementation. The student will work in tandem with the supervisor for data analysis and work independently using the Oxford Nanopore Galaxy cloud computational tool.

Qualifications:

A successful student will have a strong background in practical microbiology (aseptic technique, media preparation) and good working-knowledge of cellular and molecular biology. The student should be technologically literate and have aptitude for data-science/bioinformatic analysis. Supervision will be provided 100% in English and the thesis must be drafted in English. Strong communication skills are compulsory.

Career:

Cell-based systems engineering is not only for those interested in the cannabis industry. Outside of the cannabis-space, pharmaceutical and chemical companies are increasingly investing in biologics-portfolio development for drugs, polymers, agro-chemicals, and biofuels. The project will be of-interest to those who want to pursue a career in biotech, ag-tech, biochemistry, molecular biology, genetics, bioinformatics, or fermentation sciences. Next generation sequencing (NGS) such as Oxford Nanopore and bioinformatics are highly marketable skills and will be beneficial for an academic career for researchers interested in non-model organisms, microbiomics, virology, or other research fields with rely on sequencing.

Applicants are encouraged to send a letter of motivation including a short description of their background and qualifications. Please contact Ms. Jordan with further questions.

Contact: Erin Jordan, M.Sc. (please cc Oliver Kayser), Professor Oliver Kayser

 

24. November 2020: The following master thesis is offered at the Chair of Technical Biochemistry:

Development of an assay system for the quantification of cannabigerolic acid

Background

Cannabinoids isolated from Cannabis sativa L. have gained increasing importance in medical applications over the last decades. Due to the legal basis, the isolation from plants is very complex and costly, so that biotechnological alternatives are used. The Chair of Technical Biochemistry is working on the production of cannabinoids in Saccharomyces cerevesiae. An important aspect of this is the so-called protein engineering. In rational design, bioinformatics tools are used to predict protein variants that optimize protein function based on different approaches. In order to evaluate the protein variants in parallel and as efficiently as possible, high-throughput screening systems are preferably used.

Task

In this work, a high-throughput screening system for a prenyltransferase will be developed. This system shall be based on the detection of diphosphate as a cleavage product of the enzymatic reaction. By further enzymatic conversions, diphosphate can be quantified by a luminescence signal.

Methods

The main part of this work will be in the area of method development, where a robust screening system will be built by step by step construction using our own ideas. A luminometer will be used for this purpose. Through an application to enzymatic reactions in S. cerevisiae, additional experience will be gained in the microbiological field with regard to the cultivation of yeasts. Analytical skills such as the use of HPLC (High-performance-liquid-chromatography) will also be learned.

Requirements

Willingness and interest in method development and knowledge in handling microbiological organisms should be present. A high motivation for independent work is a basic requirement. In addition, the thesis must be written in English, so a high level of language skills is required.


Applications for this position should be sent to M. sc. Saskia Spitzer with Prof. Dr. Dr. h. c. Oliver Kayser in cc including a letter of motivation and a short description of the study background and existing basic knowledge. If you have any further questions, please do not hesitate to contact Ms. Spitzer.

 

 

Location & approach

The campus of the Technical University of Dortmund is located near the Dortmund West interchange, where the A45 Sauerland line crosses the B1/A40 Ruhr expressway. The Dortmund-Dorstfeld exit on the A40 leads to Campus-Nord. The university is signposted at both exits.

The "Dortmund Universität" S-Bahn station is located directly on the North Campus. From here, the S-Bahn line S1 runs every 15 or 30 minutes to Dortmund main station and in the opposite direction to Düsseldorf main station via Bochum, Essen and Duisburg. In addition, the university can be reached by bus lines 445, 447 and 462. Timetable information can be found on the homepage of the Rhine-Ruhr Transport Association. DSW21 also offer an interactive route network map.

 

One of the landmarks of the TU Dortmund is the H-Bahn. Line 1 runs every 10 minutes between Dortmund Eichlinghofen and the Technology Center via Campus South and Dortmund University S, while Line 2 commutes every 5 minutes between Campus North and Campus South. It covers this distance in two minutes.

From Dortmund Airport, the AirportExpress takes just over 20 minutes to Dortmund's main train station, and from there, the S-Bahn takes you to the university. A wider range of international flight connections is offered by Düsseldorf Airport, about 60 kilometers away, which can be reached directly by S-Bahn from the university's train station.

Interactive map

The facilities of TU Dortmund University are spread over two campuses, the larger Campus North and the smaller Campus South. Additionally, some areas of the university are located in the adjacent "Technologiepark".

Campus Lageplan Zum Lageplan